<table>
<thead>
<tr>
<th>FINE ARTS</th>
<th>FINE ARTS</th>
</tr>
</thead>
</table>
| **MUS 1A. Fundamentals of Music A (4)**
Primarily intended for students without previous musical experience. It introduces music notation and basic music theory topics such as intervals, scales, keys, and chords, as well as basic rhythm skills. *Prerequisites: none.* | **MUS 20. Exploring the Musical Mind (4)**
How do we transform complex sounds into comprehensible and meaningful music? What physiological, neurological, cognitive, and cultural systems are involved? Why do we make music in such diverse ways around the globe? Does music have evolutionary or ecological significance? What is the relationship between music, motion, and emotions? This course explores contemporary understandings of how we hear and how we become musical and invites students to listen to new music in new ways. Students may not receive credit for both MUS 20 and COGS 20. (Cross-listed with COGS 20.) *Prerequisites: none.* |
| **MUS 4. Introduction to Western Music (4)**
A brief survey of the history of Western Music from the Middle Ages to the present. Much attention will be paid to the direct experience of listening to music and attendance of concerts. Class consists of lectures, listening labs, and live performances. *Prerequisites: none.* | **TDAC 1. Introduction to Acting (4)**
A beginning course in the fundamentals of acting: establishing a working vocabulary and acquiring the basic skills of the acting process. Through exercises, compositions, and improvisations, the student actor explores the imagination as the actor’s primary resource, and the basic approach to text through action. *Prerequisites: none.* |
| **MUS 5. Sound in Time (4)**
An examination and exploration of the art and science of music making. Topics include acoustics, improvisation, composition, and electronic and popular forms. There will be required listening, reading, and creative assignments. No previous musical background required. *Prerequisites: none.* | **TDDE 1. Introduction to Design for the Theatre (4)**
A survey of contemporary and historical concepts and practices in the visual arts of the theatre; studies in text analysis, studio processes and technical production; elementary work in design criticism, scale model making, and costume design. A course serving as an introduction to theatre design and production. *Prerequisites: none.* |
| **MUS 6. Electronic Music (4)**
Lectures and listening sessions devoted to the most significant works of music realized through the use of computers and other electronic devices from the middle of this century through the present. *Prerequisites: none.* | **TDDM 1. Introduction to Dance Making (4)**
Explores the concepts and processes of dance making through creative projects, discussions, and the examination of major dance works. Recommended preparation: No prior dance experience required. Open to all levels. *Prerequisites: none.* |
| **MUS 8. American Music: Jazz Cultures (4)**
Jazz is one of the primary foundations for American music in the twentieth and twenty-first centuries. This course highlights the multicultural and international scope of jazz by taking a thematic rather than a chronological approach to the subject, and by highlighting the music and lives of a diverse array of jazz practitioners from around the country and around the world. Students may not receive credit for both MUS 8 and MUS BGS. *Prerequisites: none.*
Course can overlap with Diversity, Equity, and Inclusion (DEI) University requirement. | **TDDM 5. Site Specific Dance and Performance (4)**
The study of stance and performance creation in relation to the environment, political activism, happenings and ritual. Students explore ideas within the unique attributes of architecture, natural landscapes, public spaces, visual art, historic landmarks and cultural contexts. Recommended preparation. Open to all levels. *Prerequisites: none.* |
| **MUS 15. Popular Music (4)**
A course on popular music from different time periods, covered through lectures, films, and listening sessions. Topics vary from year to year. May be repeated once for credit. *Prerequisites: none.* | **TDGE 1. Introduction to Theatre (4)**
An introduction to fundamental concepts in drama and performance. Students will attend performances and learn about how the theatre functions as an art and as an industry in today’s world. *Prerequisites: none.* |
| **MUS 19R Blacktronika: Afrofuturism/Electronic Music (4)**
Explores the lineage of electronic music’s Black pioneers, who have been integral but overlooked in the discussion around the creation and development of house, techno, drum and bass, and experimental music. These musics were developed with sociopolitical movements at the foundation of the sounds. We will investigate the African diaspora lens through the artists’ usage of science fiction, technology, and futurist ideologies. *Prerequisites: none.*
Course can overlap with Diversity, Equity, and Inclusion (DEI) University requirement. | **TDGE 10. Theatre and Film (4)**
Theatre and Film analyzes the essential differences between theatrical and cinematic approaches to drama. Through selected play/film combinations, the course looks at how the director uses actors and the visual languages of the stage and screen to guide and stimulate the audience’s responses. *Prerequisites: none.* |
| **TDGE 25. Public Speaking (4)**
This course is designed to establish a clear understanding of the fundamentals of effective oral communication. The methodologies explore the integration of relaxation, concentration, organization, and clear voice and diction as applied to various public speaking modes. *Prerequisites: none.* | |
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIS 20</td>
<td>Introduction to Art History (4)</td>
<td>This course examines history of Western art and architecture through such defining issues as the respective roles of tradition and innovation in the production and appreciation of art; the relation of art to its broader intellectual and historical contexts; and the changing concepts of the monument, the artist, meaning, style, and "art" itself. Representative examples will be selected from different periods, ranging from Antiquity to Modern. Content will vary with the instructor. Prerequisite: none</td>
</tr>
<tr>
<td>VIS 30</td>
<td>Introduction to Speculative Design (4)</td>
<td>Speculative design uses design methods to question and investigate material culture with critical creative purpose. This course provides a historical, theoretical, and methodological introduction to speculative design as a distinct program. Emphasis is on the integration of interdisciplinary intellectual and technical problems toward creative, unexpected propositions and prototypes. Prerequisites: none</td>
</tr>
<tr>
<td>VIS 41</td>
<td>Design Communication (4)</td>
<td>This course provides a strong foundation in contemporary techniques of design communication, including: digital image editing, typography, vector-based illustration and diagramming, document layout, as well as basic digital video editing tools, and web-production formats. Emphasis is on mastery of craft through iteration and presentation of multiple projects. Students may not receive credit for VIS 140 or ICAM 101 and VIS 41. Prerequisites: none</td>
</tr>
<tr>
<td>VIS 60</td>
<td>Introduction to Digital Photography (4)</td>
<td>An in-depth exploration of the camera, combining darkroom techniques in black and white, and color photography. Emphasis is placed on developing reliable control of the fundamental materials and procedures through lectures, field, and lab experience. Basic discussion of image making included. Prerequisite: none. Program or materials fee may apply.</td>
</tr>
</tbody>
</table>
QUANTITATIVE/FORMAL SKILLS For Non-Science/Math/Engineering Majors

Formal Logic

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIGN 17. Making and Breaking Codes (4)</td>
<td>A rigorous analysis of symbolic systems and their interpretations. Students will learn to encode and decode information using progressively more sophisticated methods; topics covered include ancient and modern phonetic writing systems, hieroglyphics, computer languages, and ciphers (secret codes). Prerequisites: none.</td>
</tr>
<tr>
<td>PHIL 10. Introduction to Logic (4)</td>
<td>Basic concepts and techniques in both informal and formal logic and reasoning, including a discussion of argument, inference, proof, and common fallacies, and an introduction to the syntax, semantics, and proof method in sentential (propositional) logic. Prerequisite: none</td>
</tr>
<tr>
<td>PHIL 12. Scientific Reasoning (4)</td>
<td>Strategies of scientific inquiry: how elementary logic, statistical inference, and experimental design are integrated to evaluate hypotheses in the natural and social sciences. Prerequisite: none</td>
</tr>
</tbody>
</table>

Statistics

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BILD 5. Data Analysis and Design for Biologists (4)</td>
<td>This course is a practical introduction to information literacy, experimental design, and data analysis for biologists. Students will be introduced to coding, data management, and quantitative analysis. However, this is not a traditional statistics course and no math prerequisites are required. Rather, this course focuses on practical skills related to effectively asking and answering biological questions with data.</td>
</tr>
<tr>
<td>COGS 14B. Introduction to Statistical Analysis (4)</td>
<td>Introduction to descriptive and inferential statistics. Tables, graphs, measures of central tendency and variability. Distributions, Z-scores, correlation, regression. Probability, sampling, logic of inferential statistics, hypothesis testing, decision theory. T-test, one and two-way Anova, nonparametric tests (Chi-square). Prerequisites: COGS 14A.</td>
</tr>
<tr>
<td>POLI 30D Political Inquiry (4)</td>
<td>Introduction to the logic of inference in social science and to quantitative analysis in political science and public policy including research design, data collection, data description and computer graphics, and the logic of statistical inference (including linear regression). POLI 30 is Lecture only, and POLI 30D is Lecture plus Discussion section. These courses are equivalents of each other in regard to major requirements, and students may not receive credit for both 30 and 30D. Prerequisites: none.</td>
</tr>
</tbody>
</table>

QUANTITATIVE/FORMAL SKILLS For Non-Science/Math/Engineering Majors

PSYC 60. Introduction to Statistics (4)

Course provides an intro to social psychology. Topics may include emotion, aesthetics, behavior medicine, person perception, and attitude change and behavior. **Prerequisites:** none.

SOCI 60. Practice of Social Research (4)

This course introduces students to the fundamental principles of the design of social research. It examines the key varieties of evidence, sampling methods, logic of comparison, and causal reasoning researchers use in their study of social issues. Will not receive credit for SOCI 60 and SOC 60. **Prerequisites:** none.

MATH 11. Calculus-Based Introductory Probability and Statistics (5)

Events and probabilities, conditional probability, Bayes’ formula. Discrete and continuous random variables: mean, variance; binomial, Poisson distributions, normal, uniform, exponential distributions, central limit theorem. Sample statistics, confidence intervals, hypothesis testing, regression. Applications. Introduction to software for probabilistic and statistical analysis. Emphasis on connections between probability and statistics, numerical results of real data, and techniques of data analysis. **Prerequisites:** AP Calculus BC score of 3, 4, or 5, or MATH 10B or MATH 20B.

HDS 60. Intro to Statistical Analysis (4)

Course provides an intro to descriptive and inferential statistics, core tools in the process of scientific discovery, and interpretation of research. **Prerequisite:** none

Programming

CSS 1. Introductory Programming for Computation Social Science (4)

This course develops computational thinking practices for defining, describing, and analyzing social science problems using a computational approach. Students will learn to program in Python in the context of computational social science problems. **Prerequisites:** none.

CENG 15R/NANO 15. Engineering Computation using MATLAB (4)

(Cross listed with NANO 15) Introduction to solution of engineering problems using computational methods. Formulating problem statements, selecting algorithms, writing computer programs, and analyzing output using MATLAB. Computational problems from nanoengineering, chemical engineering, and materials science are introduced. The course requires no previous programming skills. Students may only receive credit for one of the following: CENG 15 or NANO 15

Other

MGT 3. Quantitative Methods in Business (4)

Introduction to techniques to develop/analyze data for informed tactical and strategic management decisions: statistical inference, probability, regression analysis, and optimization. Using these analytic approaches, theory-based formulas, and spreadsheets, students explore managerial applications across all areas of business activity. **Prerequisites:** none.
For Science/Math/Engineering Majors

Computer Programming

CSE 6R. Introduction to Computer Science and Object-Oriented Programming: Python (4)
An introduction to computer science and programming using the Python language. The course will cover topics such as basic data types (e.g., integer, float, string), loops and iteration, basic data structures (e.g. list, set, dictionary), memory models, conditional statements, recursion, basic algorithm time complexity analysis, class design, and inheritance.

CSE 8A. Introduction to Programming and Computational Problem-Solving I (4)
Introductory course for students interested in computer science and programming. Basics of programming including variables, conditionals, loops, functions/methods. Structured data storage such as arrays/lists and dictionaries, including data mutation. Hands-on experience with designing, writing, hand-tracing, compiling or interpreting, executing, testing, and debugging programs. Students solve relevant computational problems using a high-level programming language. CSE 8A is part of a two-course sequence (CSE 8A-B) that is equivalent to CSE 11. Students should take CSE 8B to complete this track. Students who have taken CSE 8B or CSE 11 may not take or receive credit for CSE 8A.
Recommended preparation: No prior programming experience is assumed, but comfort using computers is helpful. Students should consult the "CSE Course Placement Advice" web page for assistance in choosing which CSE course to take first.
Prerequisites: none.

CSE 8B. Introduction to Computer Science: Java II (4)
Introductory programming using an object-oriented approach with the Java programming language. Builds on basic programming constructs introduced in CSE 8A to introduce class design and use, interfaces, basic class hierarchies, recursion, event-based programming, error reporting with exceptions, and file I/O. Basics of command-line navigation for file management and running programs. Development, testing, and debugging of more complex programs. CSE 8B is part of a two-course sequence (CSE 8A-B) that is equivalent to CSE 11. No credit offered for CSE 8B if CSE 11 taken previously. Students may not receive credit for CSE 8B and CSE 11. Students should consult the "CSE Course Placement Advice" web page for assistance in choosing which CSE course to take first. Prerequisites: CSE 8A (AP credit or CSE 8A course equivalent).

CSE 11. Introduction to Computer Science: Java (4)
Accelerated introductory programming including an object-oriented approach. Covers basic programming topics from CSE 8A including variables, conditionals, loops, functions/methods, structured data storage, and mutation. Also covers topics from CSE 8B including the Java programming language, class design, interfaces, basic class hierarchies, recursion, event-based programming, and file I/O. Basics of command-line navigation for file management and running programs. Zero units of credit offered for CSE 11 if CSE 8B taken previously or concurrently. Recommended preparation: Significant prior programming experience (for example, high school AP CSA). Students should consult the "CSE Course Placement Advice" web page for assistance in choosing a first CSE course. Prerequisites: none.

ECE 15. Engineering Computation (4)
Students learn the C programming language with an emphasis on high-performance numerical computation. The commonality across programming languages of control structures, data structures, and I/O is also covered. Techniques for using MathLab to graph the results of C computations are developed. Prerequisites: a familiarity with basic mathematics such as trigonometry functions and graphing is expected but this course assumes no prior programming knowledge.
<table>
<thead>
<tr>
<th>Mathematics/ Calculus</th>
<th>Mathematics/ Calculus</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 3C. Pre-Calculus (4)</td>
<td>MATH 20C. Calculus and Analytic Geometry for Science and Engineering (4)</td>
</tr>
<tr>
<td>Functions and their graphs. Linear and polynomial functions, zeroes, inverse functions, exponential and logarithmic, trigonometric functions and their inverses. Emphasis on understanding algebraic, numerical and graphical approaches making use of graphing calculators. (No credit given if taken after MATH 4C, 1A/10A, or 2A/20A.) Three or more years of high school mathematics or equivalent recommended. Prerequisite: Math Placement Exam qualifying score, or ACT Math score of 22 or higher, or SAT Math score of 600 or higher.</td>
<td>Vector geometry, vector functions and their derivatives. Partial differentiation. Maxima and minima. Double integration, Two units of credit given if taken after Math 10C. Credit not offered for both Math 20C and 31BH. Prerequisite: AP Calculus BC score of 4, or 5, or Math 20B with a grade of C– or better.</td>
</tr>
<tr>
<td>MATH 4C. Pre-Calculus for Science and Engineering (4)</td>
<td>MATH 10A. Calculus I (4)</td>
</tr>
<tr>
<td>Review of polynomials. Graphing functions and relations: graphing rational functions, effects of linear changes of coordinates. Circular functions and right triangle trigonometry. Reinforcement of function concept: exponential, logarithmic, and trigonometric functions. Vectors. Conic sections. Polar coordinates. (No credit given if taken after MATH 1A/10A or 2A/20A. Two units of credit given if taken after MATH 3C.) Three or more years of high school mathematics or equivalent recommended. Prerequisite: Math Placement Exam qualifying score, or ACT Math score of 25 or higher, or AP Calculus AB score (or subscore) of 2.</td>
<td>Differential calculus of functions of one variable, with applications. Functions, graphs, continuity, limits, derivatives, tangent lines, optimization problems. (No credit given if taken after or concurrent with MATH 20A.) Prerequisite: Math Placement Exam qualifying score, or AP Calculus AB score of 2, or SAT II Math 2C score of 600 or higher, or Math 3C with a grade of C or better, or Math 4C with a grade of C– or better.</td>
</tr>
<tr>
<td>MATH 10B. Calculus II (4)</td>
<td>MATH 10B. Calculus II (4)</td>
</tr>
<tr>
<td>Integral calculus of functions of one variable, with applications. Antiderivatives, definite integrals, the Fundamental Theorem of Calculus, methods of integration, areas and volumes, separable differential equations. (No credit given if taken after or concurrent with Math 20B.) Prerequisite: AP Calculus score of 3, 4, or 5 (Or equivalent AB subscore on BC exam), or Math 10A, or Math 20A.</td>
<td>Integral calculus of functions of one variable, with applications. Functions, graphs, continuity, limits, derivative, tangent line. Applications with algebraic, exponential, logarithmic, and trigonometric functions. Introduction to the integral. Prerequisite: AP Calculus BC score of 3, 4, or 5, or MATH 10B, or MATH 20B.</td>
</tr>
<tr>
<td>MATH 10C. Calculus III (4)</td>
<td>MATH 20A. Calculus for Science and Engineering (4)</td>
</tr>
<tr>
<td>Introduction to functions of more than one variable. Vector geometry, partial derivatives, velocity and acceleration vectors, optimization problems. (No credit given if taken after or concurrent with Math 20C.) Prerequisite: AP Calculus BC score of 3, 4, or 5, or MATH 10B, or MATH 20B.</td>
<td>Foundations of differential and integral calculus of one variable. Functions, graphs, continuity, limits, derivative, tangent line. Applications with algebraic, exponential, logarithmic, and trigonometric functions. Introduction to the integral. Prerequisite: Math Placement Exam qualifying score, or test score</td>
</tr>
<tr>
<td>MATH 20B. Calculus for Science and Engineering (4)</td>
<td>MATH 20B. Calculus for Science and Engineering (4)</td>
</tr>
<tr>
<td>Integral calculus of one variable and its applications, with exponential, logarithmic, hyperbolic, and trigonometric functions. Methods of integration. Polar coordinates in the plane. (Two units of credits given if taken after Math 10B or Math 10C.) Prerequisite: AP Calculus AB score of 4, or 5, or AP Calculus BC score of 3, or Math 20A with a grade of C– or better, or Math 10B with a grade of C– or better, or Math 10C with a grade of C– or better.</td>
<td>Integral calculus of one variable and its applications, with exponential, logarithmic, hyperbolic, and trigonometric functions. Methods of integration. Polar coordinates in the plane. (Two units of credits given if taken after Math 10B or Math 10C.) Prerequisite: AP Calculus AB score of 4, or 5, or AP Calculus BC score of 3, or Math 20A with a grade of C– or better, or Math 10B with a grade of C– or better, or Math 10C with a grade of C– or better.</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>GLBH 20</td>
<td>Introduction to Global Health (4)</td>
</tr>
<tr>
<td>SIO 12</td>
<td>History of the Earth and Evolution (4)</td>
</tr>
<tr>
<td>BILD 32</td>
<td>Intro to Cancer Biology (4)</td>
</tr>
<tr>
<td>COGS 11</td>
<td>Minds and Brains (4)</td>
</tr>
<tr>
<td>COGS 17</td>
<td>Neurobiology of Cognition (4)</td>
</tr>
<tr>
<td>ENVR 30</td>
<td>Environmental Issues: Natural Sciences (4)</td>
</tr>
<tr>
<td>PHYS 10</td>
<td>Concepts in Physics (4)</td>
</tr>
<tr>
<td>PSYC 2</td>
<td>General Psychology: Biological Foundations (4)</td>
</tr>
</tbody>
</table>
NATURAL SCIENCES

For Science/Math/Engineering Majors

BILD 1. The Cell (4)
An introduction to cellular structure and function, to biological molecules, bioenergetics, to the genetics of both prokaryotic and eukaryotic organisms, and to the elements of molecular biology.

BILD 2. Multicellular Life (4)
An introduction to the development and the physiological processes of plants and animals. Included are treatments of reproduction, nutrition, respiration, transport systems, regulation of the internal environment, the nervous system, and behavior. **Prerequisites:** BILD 1.

BILD 3. Organismic and Evolutionary Biology (4)
The first principles of evolutionary theory, classification, ecology, and behavior; a phylogenetic synopsis of the major groups of organisms from viruses to primates. **Prerequisite:** none.

BILD 60. Exploring Issues of Diversity, Equity, and Inclusion in Relation to Human Biology (4)
This course will examine diversity, equity, and inclusion beginning with a biological framework. Focus will be on how underlying biological differences have been used to support bias and prejudice against particular groups such as women, African Americans, and Latinos. This course is approved to meet the campus Diversity, Equity, and Inclusion (DEI) requirement. **Prerequisites:** BILD 1 and BILD 2 or 3.

CHEM 4. Chemical Thinking (4)
This is a one-quarter preparatory chemistry course intended for students continuing on to general chemistry. The course will focus on the development and analysis of submicroscopic models of matter and structure-property relationships to explain, predict, and control chemical behavior. May not receive credit for both CHEM 4 and CHEM 11. Includes a laboratory/discussion each week. Recommended: concurrent enrollment in MATH 3C, 4C or 10A or higher. Restricted to first-year and sophomore enrollment.

CHEM 6A. General Chemistry I (4)
First quarter of a three-quarter sequence intended for science and engineering majors. Topics include: atomic theory, bonding, molecular geometry, stoichiometry, types of reactions, and thermochemistry. May not be taken for credit after Chem 6AH. Recommended: proficiency in high school chemistry and/or physics; concurrent or prior enrollment in Math 10A or 20A. **Prerequisite:** none.

CHEM 6B. General Chemistry II (4)
Second quarter of a three-quarter sequence intended for science and engineering majors. Topics include: covalent bonding, gases, liquids, and solids, colligative properties, physical and chemical equilibria, acids and bases, solubility. May not be taken for credit after Chem 6BH. **Prerequisites:** Chem 6A or 6AH and Math 10A or 20A. Recommended: concurrent or prior enrollment in Math 10B or 20B.

CHEM 6C. General Chemistry III (4)
Third quarter of a three-quarter sequence intended for science and engineering majors. Topics include: thermodynamics, kinetics, electrochemistry, coordination chemistry, and introductions to nuclear, main group organic, and biochemistry. May not be taken for credit after Chem 6CH. **Prerequisites:** Chem 6B or 6BH. Recommended: completion of Math 10B or 20B

NATURAL SCIENCES

For Science/Math/Engineering Majors

PHYS 1A. Mechanics (3)
First quarter of a three-quarter introductory physics course, geared towards life-science majors. Equilibrium and motion of particles in one and two dimensions in the framework of Newtonian mechanics, force laws (including gravity), energy, momentum, rotational motion, conservation laws, and fluids. Examples will be drawn from astronomy, biology, sports, and current events. **Prerequisites:** Mathematics 10A or 20A. Corequisites: Recommended preparation: concurrent or prior enrollment in PHYS 1A and MATH 10B or 20B

PHYS 1AL. Mechanics Laboratory (2)
Physics laboratory course to accompany PHYS 1A. Experiments in mechanics. **Prerequisites:** Physics 1A or 2A. Corequisites: Physics 1A and Mathematics 10B or 20B

PHYS 1B. Electricity & Magnetism (3)
Second quarter of a three-quarter introductory physics course geared towards life-science majors. Electric fields, magnetic fields, DC and AC circuitry. **Prerequisites:** PHYS 1A or 2A, 1AL or 2BL, and Math 10B or 20B. Corequisites: Physics 1BL and Math 10C or 20C or 11

PHYS 1BL. Electricity & Magnetism Laboratory (2)
Physics laboratory course to accompany PHYS 1B. Experiments in electricity and magnetism. Course materials fee may apply. **Prerequisite:** Physics 1A or 2A, 1AL or 2BL, and Mathematics 10B or 20B. Corequisites: Physics 1BL and Mathematics 10C or 20C or 11

PHYS 1C. Waves, Optics & Modern Physics (3)
Third quarter of a three-quarter introductory physics course geared toward life-science majors. The physics of oscillations and waves, vibrating strings and sound, the behavior of systems under combined thermal and electric forces, and the interaction of light with matter as illustrated through optics and quantum mechanics. Examples from biology, sports, medicine, and current events. **Prerequisites:** Physics 1B or 2B, 1BL or 2CL, and Math 10C or 20C or 31BH or 11. Corequisites: Physics 1CL

PHYS 1CL. Waves, Optics, and Modern Physics Laboratory (2)
Physics laboratory course to accompany Physics 1C. Experiments in waves, optics, and modern physics. Program or material fee may apply. **Prerequisites:** Physics 1B or 2B, 1BL or 2CL, and Math 10C or 20C or 31BH or 11. Corequisites: Physics 1CL

PHYS 2A. Physics—Mechanics (4)
A calculus-based science engineering general physics course covering vectors, motion in one and two dimensions, Newton’s first and second laws, work and energy, conservation of energy, linear momentum, collisions, rotational kinematics, rotational dynamics, equilibrium of rigid bodies, oscillations, gravitation. Students may not receive credit for PHYS 2A and 4A. **Prerequisites:** Math 20A Corequisites: Math 20B

PHYS 2B. Physics—Electricity & Magnetism (4)
Continuation of PHYS 2A covering charge and matter, the electric field, Gauss’s law, electric potential, capacitors and dielectrics, current and resistance, electromagnetic force and circuits, the magnetic field, Ampere’s law, Faraday’s law, inductance, electromagnetic oscillations, alternating currents and Maxwell’s equations. **Prerequisites:** PHYS 2A or 4A and Math 20A-B Corequisite: Math 20C
PHYS 2C. Physics—Fluids, Waves, Thermodynamics & Optics (4)
Continuation of PHYS 2B covering fluid mechanics, waves in elastic media, sound waves, temperature, heat and the first law of thermodynamics, kinetic theory of gases, entropy and the second law of thermodynamics, geometric optics, interference and diffraction. **Prerequisites:** PHYS 2A or 4A, and Math 20A-C
Corequisite: Math 20D

PHYS 2D. Physics—Relativity and Quantum Physics (4)
A modern physics course covering atomic view of matter, electricity and radiation, atomic models of Rutherford and Bohr, relativity, X-rays, wave and particle duality, matter waves, Schrödinger's equation, atomic view of solids, natural radioactivity. **Prerequisites:** Physics 2A or 4A, 2B, and Math 20D. **Corequisites:** Math 20E or 31CH (prior completion is sufficient).

PHYS 4C. Physics Majors—Electricity and Magnetism (4)
Continuation of PHYS 4B covering charge and Coulomb's law, electric field, electric potential, capacitors and dielectrics, current and resistance, magnetic field, Ampere's law, Faraday's law, inductance, AC circuits **Prerequisites:** Physics 2A or 4A, 2B, and Math 20D. Corequisites: Math 20E or 31CH (prior completion is sufficient).
Regional Specialization

Asia Pacific

HILD 10. East Asia: The Great Tradition (4)
The evolution of East Asian civilization from the first writing through classical Heilüan Japan and late imperial Song China. Primary and secondary readings on basic ideas, institutions and practices of the Confucian, Daoist, and Buddhist paths and of the state and family. **Prerequisites:** none.

Eurasia

MUS 4. Introduction to Western Music (4)
A brief survey of the history of Western music from the Middle Ages to the present. Much attention will be paid to the direct experience of listening to music and attendance of concerts. Class consists of lectures, listening labs, and live performances. **Prerequisites:** none.

LTEN 21. Introduction to the Literature of the British Isles: Pre-1660 (4)
An introduction to the literatures written in English in Britain before 1660, with a focus on the interaction of text and history. **Prerequisites:** none.

LTFR 2A Intermediate French 1 (5)
First course in three-quarter sequence designed to prepare students for upper-division French courses. The course its taught entirely in French and emphasizes the development of reading ability, listening comprehension, and conversational and writing skills. Basic techniques of literary analysis. **Prerequisites:** LTFR 1C/CX or its equivalent, score of 3 on French language AP exam or consent of instructor.

LTFR 2B. Intermediate French II (5)
Second course in a three-quarter sequence designed to prepare students for upper-division French courses. The course its taught entirely in French and emphasizes the development of reading ability, listening comprehension, and conversational and writing skills. Basic techniques of literary analysis. **Prerequisites:** LTFR 2A or its equivalent, score of 4 on French language or score of 3 on French literature AP Exams or consent of instructor.

LTGM 2A. Intermediate German 1 (5)
TGM 2A follows the basic language sequence of the Department of Linguistics and emphasizes the development of reading ability, listening comprehension, and conversational and writing skills. The course includes grammar review and class discussion of reading and audiovisual materials. Specifically, the course prepares students for LIGM 2B and 2C. **Prerequisites:** LTGM 1C/1CX or its equivalent or score of 3 on AP German language exam or consent of instructor.

LTIT 2A. Intermediate Italian 1 (5)
A second-year course in Italian language and literature. Conversation, composition, grammar review, and an introduction to literary and nonliterary texts. **Prerequisites:** LTIT 1C or LTIT 1C/1CX or its equivalent or a score of 3 on AP Italian Language and Culture Exam or placement result of 3 or 4 on the Language Placement Exam–Italian or consent of instructor.

LTRU2A. Second Year Russian (5)
Second-year Russian grammar, with attention to reading, writing, and speaking. **Prerequisites:** LTRU 1C or its equivalent or consent of instructor.

LTWL 19A. Intro/Ancient Greek and Romans (4)
An inductor study of ancient Greece and Rome, their literature, myth, philosophy, history, and art

PHIL 31. Introduction to Ancient Philosophy (4)
A survey of classical Greek philosophy with an emphasis on Socrates, Plato and Aristotle, though some consideration may be given to Pre-Socratic and/or Hellenistic philosophers. **Prerequisites:** none.

Regional Specialization

Europe

VIS 20. Introduction to Art in Europe/America (4)
This course examines history of Western art and architecture through such defining issues as the respective roles of tradition and innovation in the production and appreciation of art; the relation of art to its broader intellectual and historical contexts; and the changing concepts of the monument, the artist, meaning, style, and "art" itself. Representative examples will be selected from different periods, ranging from Antiquity to Modern. Content will vary with the instructor. **Prerequisites:** none.

LTSP 2A Intermediate Spanish: Foundations (5)
Course is taught in Spanish, emphasizing the development of reading ability, listening comprehension, and writing skills. It includes grammar review, weekly compositions, and class discussion. **Prerequisites:** LISP 1C/CX or LISP 1D/DX, or score of 3 on AP Spanish Language Exam or placement results 3 or 4 on the Spanish Language Placement Exam, or consent of instructor.

LTSP 2B Intermediate Spanish II: Read and Comp (5)
Review of major points of grammar with emphasis on critical reading and interpretation of Spanish texts through class discussion, vocabulary development, and written compositions. It is a continuation of LTSP 2A. **Prerequisites:** LTSP 2A or score of 4 on AP Spanish Language or 3 on AP Spanish literature exams or consent of instructor.

LTSP 2C Intermediate Spanish III: Cultural Topics (5)
Continuation of LTSP 2B, with special emphasis in writing and translation. It includes discussion of cultural topics as well as grammar review and composition, further developing the ability to read articles, essays, and longer pieces of fiction/nonfictional texts. **Prerequisites:** LTSP 2B or score of 5 on AP Spanish Language or 4 on AP Spanish Literature exams or consent of instructor.

LTSP 2D. Int. Spanish I: Bilingual Speakers (4)
Spanish for native speakers. Designed for bilingual students seeking to become biliterate. Reading and writing skills stressed with special emphasis on improvement of written expression and problems of grammar and orthography. Prepares native speakers with little or no formal training in Spanish for more advanced courses. **Prerequisites:** native speaking ability and/ or consent of the instructor

PHIL 31. Introduction to Ancient Philosophy (4)
A survey of classical Greek philosophy with an emphasis on Socrates, Plato and Aristotle, though some consideration may be given to Pre-Socratic and/or Hellenistic philosophers.

Latin America

LATI 50. Introduction to Latin America (4)
Interdisciplinary overview of society and culture in Latin America—including Mexico, the Caribbean, and South America: legacies of conquest, patterns of economic development, changing roles of women, expressions of popular culture, cycles of political change, and U.S.–Latin American relations. **Prerequisites:** none.

LATI 2B Intermediate Spanish II: Read and Comp (5)
Review of major points of grammar with emphasis on critical reading and interpretation of Spanish texts through class discussion, vocabulary development, and written compositions. It is a continuation of LTSP 2A. **Prerequisites:** LTSP 2A or score of 4 on AP Spanish Language or 3 on AP Spanish literature exams or consent of instructor.

LATI 2C Intermediate Spanish III: Cultural Topics (5)
Continuation of LTSP 2B, with special emphasis in writing and translation. It includes discussion of cultural topics as well as grammar review and composition, further developing the ability to read articles, essays, and longer pieces of fiction/nonfictional texts. **Prerequisites:** LTSP 2B or score of 5 on AP Spanish Language or 4 on AP Spanish Literature exams or consent of instructor.
DEI Course Offerings per Quarter

LTSP 2D. Int. Spanish I: Bilingual Speakers (4)
Spanish for native speakers. Designed for bilingual students seeking to become biliterate. Reading and writing skills stressed with special emphasis on improvement of written expression and problems of grammar and orthography. Prepares native speakers with little or no formal training in Spanish for more advanced courses.
Prerequisites: native speaking ability and/or consent of the instructor

Middle East
No Lower division courses offered in FA23.

Multiculturalism in North America
Visit the [Diversity, Equity, and Inclusion (DEI) website](#) for the approved courses as all Multiculturalism in North America courses overlap with the DEI requirement.

DIVERSITY, EQUITY, AND INCLUSION (DEI)

The DEI is a University requirement that all UC San Diego students must complete to graduate.
This requirement shall be satisfied by passing, with a grade no lower than C- or P, a one-quarter, four-unit course expressly approved by the Committee on Educational Policy for that purpose.

Find a lower division DEI course (courses numbered 1-99) on the [DEI Course Offerings per Quarter](#) webpage.

DEI requirement may overlap with the General Education: Regional Specialization-Multiculturalism in North America.